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ABSTRACT

Recent advances in deep learning have spurred 3D hand pose
estimation, as convolutional network (ConvNet) based meth-
ods outperformed random forests. However, in the state of
the art, ConvNet based methods employ only depth images
of the hand without leveraging color and texture informa-
tion from the RGB domain. In this paper, we investigate
whether ConvNets can learn more rich and discriminative em-
beddings, by combining RGB and depth information. To an-
swer this question, we propose the fusion of RGB and depth
information in a double-stream architecture. More specifi-
cally, RGB and depth images are fed into two separate net-
works by extracting features, which are subsequently fused
at an intermediate layer of the ConvNet, implementing input-
level fusion, feature-level fusion and score-level fusion. The
double-stream scheme is coupled with a deep ConvNet, con-
trary to the shallow networks that are mostly proposed in the
literature. Experimental results show that while the depth of
the network is crucial for hand pose estimation, the double-
stream nets perform very similarly with the net trained only
with depth images. This may suggest that training double-
stream architectures purely with supervision may be insuffi-
cient for hand pose estimation with RGB-D fusion.

Index Terms— hand pose estimation, double-stream net-
works, fusion, rgb-d, deep learning

1. INTRODUCTION

The problem of hand pose estimation has been studied in the
computer vision literature for decades [1]. Recent methods
may be classified into two different categories: the gen-
erative (model-based) approaches and the discriminative
(appearance-based) approaches. In generative hand pose es-
timation methods [2, 3,4, 5, 6], hypotheses are made from a
3D articulated hand model and poses are tracked by fitting
the model to input image observations. Discriminative meth-
ods [7,8,9,10,11,12,13,14,15,16,17,18,19] learn a mapping
from visual features to a target parameter space such as joint
locations. Typically, a regressor or a classifier is used to infer
joint locations. The popularization of RGB-D sensors has
motivated the interest of the computer vision community in
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pose estimation as depth images have significantly improved
the performance of the related methods. While a big part
of the literature based on discriminative approaches used
randomized decision forests (RDFs) or regression forests
variants [11,12, 13,14, 15], here we focus on ConvNet based
methods.

The widespread use of convolutional networks influenced
the hand pose estimation literature as well. Tompson et al [7]
trained a multi-resolution convolutional network to predict
2D heat-maps for each joint location. Oberweger et al [10]
proposed an architecture which imposes a prior on the phys-
ical constraints of the hand using a "bottleneck” layer before
the output layer. In [16], the same authors adopted a genera-
tive approach where a synthesizer network was trained to it-
eratively generate depth images given predicted poses. Zhou
et al [8] introduced a model based deep learning approach,
where a new layer was proposed that maps joint angles to joint
locations. Oberweger and Lepetit [17] improved the perfor-
mance of [10] by employing data augmentation techniques,
and inserting residual connections to their original architec-
tures inspired by [20]. In [18], the hand depth images are
encoded by a volumetric representation, which is fed into a
3D ConvNet. In [19], Region Ensemble Networks are pro-
posed, where the feature map of the last convolutional layer
is divided in multiple grid regions, and each of them is fed in
a separate fully-connected layer.

Depth images are useful cues for 3D pose estimation,
since they encapsulate 3D information, which is directly cor-
related with the estimation of 3D joint positions. RGB images
describe accurately the surface of objects with color and tex-
ture information, which lack from depth images resulting in
a relatively less precise description of the objects. In this
work, we investigate whether the combination of RGB and
depth information can improve the performance of convo-
lutional networks, since the benefits and drawbacks of each
domain are complementary. To this end, we build upon the
double-stream architecture paradigm [21], to fuse RGB and
depth information at any layer of the network. We evaluate
input-level fusion in which the input images are combined,
feature-level fusion in which the streams may be fused at any
convolutional or fully-connected layer, and score-level fusion
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Fig. 1: FuseNet: Our architecture for double-stream architecture fusion. Two streams are trained in parallel, the depth stream
and the RGB stream with depth and RGB images respectively, and at any layer the networks may be fused. After the inserted
fusion each respective net is truncated and the network continues as a single ConvNet. Here, we demonstrate the fusion (purple
block), in the last convolutional layer, implementing feature-level fusion; nevertheless, it can be inserted at the input layer for
input level fusion, at the output layer for score level fusion, or at any intermediate feature layer (convolutional, pooling or
fully-connected). We call DepthNet the single stream version with depth images as input.

where the streams’ predictions are combined. We use fusion
functions proposed in [21] and we propose a new trainable
function for score-level fusion. In each case, we use as base
network a deep ConvNet which we carefully designed.

We implemented our approach using Lasagne [22] and
our code is available at: https://github.com/ekazakos/fusenet-
hand-pose.

2. RGB-D FUSION WITH CONVNETS

We consider the case of estimating the 3D joint positions
J = {j;}/_, of a hand, where j, = (z;,y;,2;) and J is the
number of joints. We also assume that we have an annotated
dataset for training. While most of the modern discriminative
approaches estimate the 3D hand pose from a single depth
image, we employ both RGB and depth images.

For segmenting the hand from the depth images, we fol-
low [8, 10]. RGB images are normalized to follow a normal
distribution with zero mean and a standard deviation of one.

Here, we present our approach of fusing RGB and depth
information with ConvNets for hand pose estimation. We
adopt the double-stream architecture fusion paradigm, which
was first proposed in [21, 23] for activity recognition using a
spatial and a temporal stream, where in [23] the class predic-
tions of each respective stream were fused, while in [21] the
authors proposed the fusion of feature maps.

We employ two streams, the RGB stream and the depth
stream, which may be fused at any layer of the architecture.
Depending on the layer of fusion, someone may implement:
input-level fusion, feature-level fusion and score-level fusion.
For each fusion strategy, different fusion functions are appro-
priate. For input-level fusion and feature-level fusion, we in-
vestigate the performance of existing fusion functions, while
for score-level fusion we propose a new trainable fusion func-
tion.
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In Fig. 1, we demonstrate our double-stream fusing ar-
chitecture which we call FuseNet. Two separate streams,
the depth stream and the RGB stream are put in parallel and
trained simultaneously with depth and RGB images respec-
tively. Here we show the case were the fusion (purple block)
takes place after the last convolutional layer, implementing
feature-level fusion. By placing the fusion block at differ-
ent layers, the other fusion techniques can be implemented as
well. After the inserted fusion each respective net is truncated
and the network continues as a single ConvNet.

Our architecture deploys in all convolutional layers 3 x 3
kernels with a stride of 1 and zero-padding of 1, and max-
pooling layers with 3 x 3 receptive fields. ReLU nonlinear-
ities are applied after all convolutional and fully-connected
(fc) hidden layers and dropout [24] is inserted after each fc
layer. Since the preprocessing normalises the 3D joints po-
sitions in [—1, 1], we employ hyperbolic tangent activation
functions for the output units which estimate the 3D joints
position. Each stream has 9 convolutional layers and 3 max-
pooling layers, where the number of filters starts from 32 (first
convolutional group) and goes up to 128 (last convolutional
group) . There are 2 hidden fully-connected layers with 4096
hidden units and the output layer is again a fully-connected
layer with 3.J output units (J being the number of joints).

To discriminate between fusion and the baseline architec-
ture where a single stream is employed which is fed only with
depth images, we call the latter DepthNet. First we designed
DepthNet by varying different components of the architec-
ture, such as the depth of the network and the size of convolu-
tional kernels, and subsequently we used DepthNet as the ba-
sic building block for our fused architecture, namely FuseNet.
Due to space limitations, we will not present here the evalua-
tion of all the architectures we experimented with. Neverthe-
less, it is important to mention that the deepest architecture
provided the most accurate predictions.



For a detailed description of different fusion functions,
namely max fusion, sum fusion, concatenation fusion, and
convolutional fusion, may refer to [21].

Input-level fusion and feature-level fusion. Input-level
fusion can be achieved by placing the fusion block after the
input layers of the two streams, while for feature-level fusion
the fusion block can be placed after any convolutional, pool-
ing, or fully-connected hidden layer since these layers provide
intermediate representations (features) of the input images.
For feature-level fusion we evaluate all fusion functions pre-
sented in [2 1], while for input-level fusion only concatenation
fusion and convolutional fusion are considered, as max fu-
sion and sum fusion perform element-wise operations and re-
quire same number of channels in both streams, making them
not applicable in our case where the RGB stream has 4 input
channels and the depth stream has 1.

Score-level fusion. Score-level fusion refers to the com-
bination of the predictions of different models. In our case,
the models that their predictions are to be fused are the
depth stream and the RGB stream, and thus the fusion block
is placed after the output layer of the streams. Similarly
to [21, 23], the first fusion function we exploit is average
fusion, which is implemented by first scaling the predictions
by 0.5 and subsequently applying sum fusion.

Furthermore, we introduce a new learnable fusion func-
tion tailored for score-level fusion. Given the predictions
7", 3" € R37 (J being the number of joints), we want to

compute the final predictions as:

o~

Yy = w

a
K2

Ue + wiyl + b, ey

where 1 < ¢ < 3J, wy, wf are independent weights for each

element of the prediction vector, and b; are independent bi-
ases. We model (1) using a locally-connected layer, which
behaves as a convolutional layer with the difference that it
does not share parameters across each spatial position, i.e. it
computes a dot product of a kernel with the part of the input
that overlaps with the kernel, using a different kernel at each
shifted kernel location. We name this fusion function locally-
connected fusion. Firstly 5%, @b are stacked as separate chan-
nels using concatenation fusion, resulting in g € R37/*2,
and afterwards an 1-dimensional locally-connected layer is
incorporated which employs a filter f € R3/*2 and a bias
vector b € R3/:

ylocal _ ycat % ,f + b, (2)
where we use % to denote the operation that a locally-
connected layer performs. Note that (2) works similarly
to convolutional fusion from [21], with the difference that
different parameters are used at each spatial location.
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3. RESULTS

We evaluated our methods on NYU Hand pose dataset [7]. It
contains 72757 training-set frames and 8252 test-set frames
of RGB-D data, captured with PrimeSense, a structured-light
RGB-D sensor. The training set contains samples from a sin-
gle subject, while the test set contains samples from two sub-
jects.

NYU Hand pose dataset provides very accurate ground
truth annotations and as mentioned in [25], it exhibits very
large pose variation, which makes it one of the most chal-
lenging datasets in the literature. Although the ground truth
contains J = 36 annotated joints, for comparison purposes,
we used a subset of J = 14 joints to follow the evaluation
protocol of prior work [7, 8, ].

Although there are also other popular benchmark datasets
in the literature, such as [12, 13], we did not consider another
dataset since the NYU Hand pose dataset is the only one that
provides RGB-D data. The Dexter dataset [26] also provides
RGB-D data but is very limited in pose variation, and hence
evaluating in NYU is more challenging. All the other datasets
provide only depth images, and thus they are inappropriate for
our fusion approaches.

The evaluation metric that we used is widely used in prior
works [8, ]. It is the success-rate, that is the
fraction of test set frames whose max-joint-error is below a
threshold. In other words, it measures the fraction of test set
frames for which each predicted joint is below a maximum
Euclidean distance between the ground truth and the predicted
joint locations. This is a very challenging evaluation metric
since with a single displaced joint prediction the whole pose
can be regarded as incorrectly estimated.

The loss function that we used for training is the Eu-
clidean loss between the ground truth and the predicted joint,
summed over all joints. We trained our models using mini-
batch stochastic gradient descent with Nesterov momen-
tum [27]. We used a batch size of 128 training examples per
iteration and 100 epochs. The learning rate was set to 0.009,
the momentum to 0.98, and for the dropout probability we
used varying values in the range [0.02,0.14]. Although in a
classification setting the dropout probability is usually set to
values of an order of magnitude higher, we observed that very
low values work well in our problem. We used early stopping
such that the optimal number of training epochs was selected
and training stopped when the validation error saturated. We
decayed the learning rate with a factor of 0.5 every time the
validation error saturated. At each epoch, the training exam-
ples were shuffled as preliminary experiments showed that
this increases the performance.

In Fig. 2, we present the results of our experimental eval-
uation. In Fig. 2(a), the results of the different fusion tech-
niques are demonstrated. While we performed extensive ex-
periments by fusing using all different fusion functions men-
tioned above and by fusing at all possible layers for feature-
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Fig. 2: Evaluation of double-stream architecture fusion and comparison with the state of the art. (a) Comparison of all fusion
techniques and DepthNet. For input-level fusion the concatenation function was used, for feature-level fusion the sum function
was used and the fusion was performed at conv7 layer. For score-level fusion the locally-connected function was used. (b)
Comparison of double-stream architecture fusion with the state of the art. We compare using both DepthNet where no fusion is

present and RGB-D fusion which refers to feature-fusion.

level fusion, here we show the best performing fusion func-
tion and layer of fusion (for feature-level fusion) for each fu-
sion technique, due to space limitations. For input-level fu-
sion, the concatenation function was used, feature-level fu-
sion was performed by fusing at conv7 layer using the sum
fusion function. For score-level fusion, the locally-connected
fusion function was employed. The use of different fusion
functions and the fusion at different layers for feature-level
fusion resulted in very subtle differences in terms of perfor-
mance. This result is noteworthy as it implies that the choice
of the layer to perform feature-level fusion and the choice of
fusion functions for all fusion techniques is not important,
since the accuracy of the model will not be significantly af-
fected.

More interestingly, in Fig. 2(a) we can see that the accura-
cies of all three different fusion techniques are almost identi-
cal, and even more interestingly, they perform about the same
with DepthNet, where no fusion is present. In fact, their sub-
tle differences is probable due to the random initialisation of
the model parameters, and in that case, fusion has no effect in
the results. From these results, we draw the conclusion that
training double-stream architectures by simply using a super-
vision loss may be inadequate for fusing RGB-D features for
hand pose estimation. A possible solution towards this direc-
tion could be the alignment of the distributions of the RGB
and depth modalities.

In Fig. 2(b), we compare our approach with the state
of the art. Our deep architecture, namely DepthNet, out-
performs some of the compared approaches [7, 8, 10, 16]
and performs similarly to [18]. This result is interesting
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because while the other approaches use either iterative re-
finement steps [10, 16] or apply inverse kinematics in the
predictions of the ConvNet [7], or apply a forward kine-
matic function inside the network [8], our model surpass
their performance without any extra refinement step. This
is because we are using a deeper ConvNet than these ap-
proaches, which indicates that in many cases a network with
increased depth is capable to map more accurately depth
images to 3D poses than approaches with shallow nets and
extra steps. Yet, while our proposed RGB-D fusion approach
does not improve the results comparing to DepthNet, the per-
formance of our model is limited comparing to [17, 18, 19].

4. CONCLUSION

In this paper, we proposed the fusion of RGB and depth im-
ages for hand pose estimation coupled with a deep convolu-
tional network. The most important findings of our experi-
mental evaluation are the following: i) The depth of the net-
work is of vital importance in hand pose estimation, as our
deep ConvNet (without fusion) alone outperforms some of
the baseline methods which use extra refinement steps, and
ii) Supervised training of double-stream architectures may be
insufficient for fusing RGB-D data for hand pose estimation.
The second conclusion is derived from the fact that after an
extensive evaluation of fusing at any possible layer of the ar-
chitecture using any of the given fusion functions, the perfor-
mance of the double-stream architecture is on par with our
baseline network that uses only depth images.
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